# Rockville Metro Plaza II

121 Rockville Pike Rockville, Maryland

**Technical Report II** 



### John Vais

PSUAE Thesis Advisor: Dr. Hanagan 9/27/2013



#### **Table of Contents**

| Executive Summary                            |  |
|----------------------------------------------|--|
| Site Location                                |  |
| Design Criteria                              |  |
| Load Analysis – Gravity                      |  |
| Floor Systems5Roof System7Wall System8       |  |
| Load Analysis – Wind Load                    |  |
| East-West Direction11North-South Direction13 |  |
| Load Analysis – Seismic Load                 |  |
| Closing                                      |  |
| Appendix A -Wind                             |  |
| Appendix B - Seismic                         |  |
| Appendix C – Building Plans and Elevations   |  |
| Appendix D - Photos                          |  |

#### **Executive Summary**

Rockville Metro II is the second part of a three phase project that will aid in revitalizing its community. The building is planned to bring new retail venues and Class A office space to the Rockville, MD area. In September of 2011, construction began on this ten story structure.

The structure was planned to have three levels of below grade parking. An initial geotechnical report concluded that the soil at this level would be adequate to support the structure on concrete footings alone. The only concern found was that the water level could exceed this elevation. Thus damp-proofing measures were taken in the design.



The entire structural system is built using cast-in-place

Figure 1: Rockville Pike Entrance - JMV

concrete. The lower levels of the structure (parking and retail levels) use flat plate, two-way slabs with mild reinforcing to support the floors. Columns which bear these levels incorporate drop caps in order to better resist punching shear forces. The upper levels of the structure (the office spaces) also use a flat plate slab with mild reinforcing to support the floors. However, in order to facilitate a more flexible office space, larger column-to-column spans (40 feet) were designed. This required additional support of the slabs. To achieve this, wide, shallow post tensioned beams were added to the design. These aided in the control of deflection as well as reduced the potential for cracking. All live loading was determined using ASCE 7 as a guide.

In order to respond to the potential for lateral loads on the structure such as seismic and wind, shear walls were incorporated into the structural design. These walls were placed at the center of the structure about the elevator core. These walls were designed to be 12" thick with rebar reinforcing. ASCE 7 also aided in determining the loading conditions for these elements. The roof of the structure is specified as a green roof. MET II is set to achieve a LEED rating of Platinum, and the green roof is one of the attributes that will aid in this achievement.

In April of 2013, construction on MET II concluded, and MET II became the National Headquarters for Choice Hotels. The following report will describe the structural systems of MET II in more depth. The structure will be analyzed as originally designed and built. Cagley and Associates is responsible for the original design the structural system of MET II and has provided all structural drawings for this report.

#### **Site Location**

Rockville Metro Plaza II is located in Rockville, Maryland, just 20 miles northwest of the heart of Washington D.C. The site sits prominently on Rockville Pike which is one of the main routes through the area. Across from the lot is the Rockville Metro stop. With such close proximity to these passage ways, this site boasts a transportation convenience for both employees and visitors alike.



The bustling Rockville area is primarily occupied by businesses, retail, restaurants, and high rise apartments. It is an ever expanding and reawakening locale, as new construction projects continually rejuvenate the lively scene. Upon visiting the area, it can be quite evident why Choice Hotels would decide to make MET II the site of their new North American Headquarters.

Figure 2: Map of Site Location – From "maps.google.com"

The new construction of MET II would be an addition to the current Rockville Metro Plaza I to the Northwest. This posed a complication during construction, for impact on MET I's daily function had to be minimized as much as possible. Excavation of the addition would be required to yield to the existing structure as well.



Figure 3: Map of Building Relations – by WDG Arch.

#### **Design Codes**

As defined on page S1.00 of the construction documents, the following codes are applicable to the design and construction of MET II's structural system and will also be used in the calculations included in this report:

- "The International Building Code-2009", International Code Council
- "Minimum Design Loads for Buildings and Other Structures" (ASCE 7), American Society of Civil Engineers
- "Building Code Requirements for Structural Concrete, ACI 318-02", American Concrete Institute
- "ACI Manual of Concrete Practice Parts 1 Through 5", American Concrete Institute
- "Post Tensioning Manual",
  Post Tension Institute



Figure 4: Rockville Town Square Obelisk – by JMV

#### **Gravity Loads**

#### Floor Loads

Rockville Metro II utilizes multiple floor systems to comprise its structure. On the office levels, floors are generally comprised of one-way slab systems on a 20' by 40' bay. These slabs are carried by wide, shallow post tension beams which transfer loads to the building's columns. On the parking levels below grade, a two-way slab system is used. These levels are mapped by 26' x 20' bays and thus better suited to be designed as two way slabs.

#### Garage Slab Loads

Within MET II, the below grade parking garage comprises levels P1, P2, and P3. OF these, 2 and 3 are elevated 8" slabs comprised of normal weight concrete and mild reinforcing.

These lower levels do not have the need for as large of an open space as compared to the office areas. The span here is governed by the diving aisle width that the International Building Code requires. Thus, the slab is designed to the 26' x 20' bay size. Since the aspect ratio is squarer, the section can be designed as a two-way slab system.

In terms of loading, the slab itself once again contributes most of the dead load on the floor system. Such items mechanical and lighting equipment are relatively light and are accounted for in the super imposed dead load. There is no flooring material installed on top of the slab and no hanging ceiling system below. The occupancy live load is defined in the IBC as a garage load of 40 psf (passenger vehicles only). However, the design uses a load of 50 psf which is the minimum load for truck and bus garages.



Figure 5: Plan of Garage Bay – by Cagley and Assoc.

| Table 1: Garage Loads |                  |  |  |  |  |
|-----------------------|------------------|--|--|--|--|
| Туре                  | Load Value (psf) |  |  |  |  |
| Slab                  | 100              |  |  |  |  |
| SDL                   | 5                |  |  |  |  |
| Live                  | 50               |  |  |  |  |
|                       |                  |  |  |  |  |

#### **Office Slab Loads**

Within MET II, office space comprises the 4<sup>th</sup> through 11<sup>th</sup> floors. Due to the consistency in layout for level to level, a typical slab design is used for each level. This is comprised of an 8" normal weight concrete slab with mild reinforcing.

In order to create a larger open space in the layout, the typical bay is designed at 20' x 40' (as seen in figure 6 to the right). This open floor plan allows the tenant of the space to have more flexibility in how they want to organize the space. Due to the uneven aspect ratio of the bay, the slab acts as a one-way system. The slab is reinforced with a bottom mat made of #4 bars at 12" on center.

In terms of loading, the slab itself contributes most of the dead load on the floor system. Such items as flooring, hanging ceiling tiles, and mechanical/lighting equipment are relatively light and are accounted for in the super imposed dead load. The occupancy live load as designed and defined in the IBC is an office load of 80 psf with an additional 20 psf for the possibility of partitions installed in the space.



Figure 6: Plan of Office Bay – by Cagley and Assoc.

| Table 2: Office Loads |                  |  |  |  |
|-----------------------|------------------|--|--|--|
| Туре                  | Load Value (psf) |  |  |  |
| Slab                  | 100              |  |  |  |
| SDL                   | 5                |  |  |  |
| Live (Occupant)       | 80               |  |  |  |
| Live (Partition)      | 20               |  |  |  |



Figure 7: Cut Away of Typical Floor Slab – by JMV

#### **Roof Slab Loads**

In pursuit of a LEED rating, the roof of MET II was designated as a green roof composition. Green roofs are a more environmentally friendly alternative to the standard roof. They reduce heat island effects, reduce rainwater runoff (which lessens the potential for sewer overflow), and provide a habitat for birds and insects, as well as many other benefits. For the structure, however, this can equate to a heavier roof as there will be more mass present than that of a standard roof. The roof is designated as an extensive green roof which means that the vegetation will mainly grasses and similar small plants (e.g. sedum). These plants have relatively shallow root systems and thus do not require a deep soil base, as only a 4" depth is used.

In order to support the roof, a concrete slab is used in a similar configuration as seen on the office levels: an 8" concrete slab comprised of normal weight concrete and #4 bars as reinforcing. The bays are 40' x 20' and the roof slab act as a one-way system and wide, shallow post tension beams are provided to transfer the load to columns.

In terms of loading, the slab itself contributes most of the dead load on the floor system. Hanging loads for the ceiling below are accounted for in the super imposed dead load. The green roof also contributes to the dead load. Live loads are as governed by IBC and ASCE 7. The controlling load is a roof live load of 30 psf for ponding (as the snow load and occupant load were determined to b 17.5 psf and 20 psf respectively).

| Table 3: Roof Composition |                    |  |  |  |  |
|---------------------------|--------------------|--|--|--|--|
| Item                      | Design Value (psf) |  |  |  |  |
| Vegetation                | 1                  |  |  |  |  |
| Soil                      | 29                 |  |  |  |  |
| Filter/ Moisture Mat      | 2                  |  |  |  |  |
| Insulation                | 3                  |  |  |  |  |
| Roof Membrane             | 5                  |  |  |  |  |
| Slab                      | 100                |  |  |  |  |
| SDL                       | 10                 |  |  |  |  |



Figure 8: Green Roof Cross Section - by Studio 39

#### **Exterior Wall Load**

Rockville Metro II is enclosed by a wall system comprised of precast concrete panels and aluminum framed glass windows. This system is attached to the structural system's slabs and columns.

Each precast panel spans between two exterior columns. Two connections are made at each column and to the slab at midspan. These connections are both load bearing and non-load bearing (as seen in figure 9). The load bearing connections (i.e. support weight of panel) only occur at the columns. Other connections act to tie back the panel to the structure and to resist loads perpendicular to the panel. Figure 9 depicts the tie back connections and the fact that they occur at two different elevations at each connection point.

The aluminum framed window system is set between the precast panels, thus their load bears on the panels. Cold formed steel studs and the remaining wall components such as insulation and dry wall bear directly onto the concrete slab. In designing the structural system of the building, a line load of 500 plf was used by the structural engineer to estimate the load of the wall configuration. During the design stage, this load would be applied to the slab, and would in turn be transferred to the columns. In actuality, the load of the precast concrete panel is directly transferred to the columns. The only load the slab sees comes from lateral loads and from the interior wall components that are set directly on the slab.



Figure 9: Precast Elevation Detail - by Cagley and Assoc.



Figure 10: Wall Elevation Section - by Cagley and Assoc.



Figure 11: Precast Plan Detail – by Cagley and Assoc.

#### Gravity Load Summary

In comparing the design values provided on the structural documents to those listed in the International Building Code and ASCE 7, it is evident that all live load requirements were met or exceeded. The main areas of where this trend is evident are mechanical rooms and office areas. Each of these spaces were designed with higher live loads most likely due to the owner's specification, anticipated actual loading, or the simply the office's standard practice for good design. The comparison of live load values may be seen in Table 4 below.

ASCE 7 was used in calculating the flat roof snow load of the structure. Using this document as a guide, the same value as presented on the structural documents was derived. This calculation can be seen in Table 5 below. Snow drift was not considered in this report. The super-imposed values presented below in Table 6 are also as listed on the structural documents.

| Table 4: Floor Live Loads |                      |                      |  |  |  |  |
|---------------------------|----------------------|----------------------|--|--|--|--|
| Area                      | As Designed (psf)    | ASCE 7-05 (psf)      |  |  |  |  |
| Corridors (first level)   | 100                  | 100                  |  |  |  |  |
| Corridors (above first)   | 100                  | 80                   |  |  |  |  |
| Lobbies                   | 100                  | 100                  |  |  |  |  |
| Marquees/Canopies         | 75                   | 75                   |  |  |  |  |
| Mechanical Room           | 150 (U)              | 125                  |  |  |  |  |
| Offices                   | 80 + 20 (partitions) | 50 + 20 (partitions) |  |  |  |  |
| Parking Garage            | 50                   | 40                   |  |  |  |  |
| Retail – First Floor      | 100                  | 100                  |  |  |  |  |
| Stairs/Exit Ways          | 100 (U)              | 100                  |  |  |  |  |
| Storage (Light)           | 125 (U)              | 125                  |  |  |  |  |

| Table 5: Flat Roof Snow Load                |                  |          | Table 6: Superimposed Dead Loads |                    |  |
|---------------------------------------------|------------------|----------|----------------------------------|--------------------|--|
|                                             |                  |          | Area                             | Design Value (psf) |  |
| Ground Snow Load                            | P <sub>g</sub> = | 25 psf   | Floor                            | 5                  |  |
| Snow Exposre Factor                         | C <sub>e</sub> = | 1.0      | Roof                             | 10                 |  |
| (Terrain Category B)                        |                  |          |                                  |                    |  |
| Thermal Factor                              | C <sub>t</sub> = | 1.0      |                                  |                    |  |
| Importance Factor                           | I <sub>s</sub> = | 1.0      |                                  |                    |  |
|                                             |                  |          |                                  |                    |  |
| $P_{f} = 0.7*P_{g}*C_{e}*C_{t}*I_{s}*P_{s}$ | P <sub>g</sub> = | 17.5 psf |                                  |                    |  |

#### Lateral Analysis - Wind Load

#### Wind Load

In order to determine the wind load on the structure of the building, ASCE 7-05's Method 2 was implemented (as described in Chapter 6 of the document). Wind loads in each the North-South and East-West directions were analyzed. Based on geographical information and building characteristics, uniform pressures were determined for each face of the structure. These pressures were converted into forces on each story level and used to calculate base shears and overturning moments. Roof uplift forces were not considered at this time. Results and loading diagrams are presented below and on the following pages. Detailed calculations of this analysis may be located in Appendix A of this document.



Figure 12: Perspective View of Southern Face - JMV

#### Wind Pressure – East-West

| Table 7: East-West Design Pressures |        |                      |                     |                   |                |                |                       |
|-------------------------------------|--------|----------------------|---------------------|-------------------|----------------|----------------|-----------------------|
|                                     | Height | Windward<br>Pressure | Leeward<br>Pressure | Total<br>Pressure | Total<br>Force | Story<br>Shear | Overturning<br>Moment |
|                                     | (ft)   | (psf)                | (psf)               | (psf)             | (kips)         | (kips)         | (k-ft)                |
|                                     |        |                      |                     |                   |                |                |                       |
| Penthouse                           | 142.00 | 12.71                | -7.57               | 20.27             | 28.97          | 28.97          | 4113.36               |
|                                     | 131.42 | 12.43                | -7.57               | 20.00             |                |                |                       |
| Main Roof                           | 120.83 | 12.13                | -7.57               | 19.70             | 59.28          | 88.24          | 7162.70               |
|                                     | 114.96 | 11.96                | -7.57               | 19.53             |                |                |                       |
| 11th                                | 109.08 | 11.78                | -7.57               | 19.35             | 47.52          | 135.77         | 5184.07               |
|                                     | 103.21 | 11.60                | -7.57               | 19.17             |                |                |                       |
| 10th                                | 97.33  | 11.41                | -7.57               | 18.97             | 46.57          | 182.34         | 4533.05               |
|                                     | 91.46  | 11.21                | -7.57               | 18.77             |                |                |                       |
| 9th                                 | 85.58  | 10.99                | -7.57               | 18.56             | 45.53          | 227.87         | 3896.77               |
|                                     | 79.71  | 10.77                | -7.57               | 18.34             |                |                |                       |
| 8th                                 | 73.83  | 10.54                | -7.57               | 18.11             | 44.38          | 272.25         | 3276.68               |
|                                     | 67.96  | 10.29                | -7.57               | 17.86             |                |                |                       |
| 7th                                 | 62.08  | 10.03                | -7.57               | 17.60             | 43.08          | 315.33         | 2674.59               |
|                                     | 56.21  | 9.75                 | -7.57               | 17.32             |                |                |                       |
| 6th                                 | 50.33  | 9.45                 | -7.57               | 17.02             | 41.58          | 356.91         | 2092.90               |
|                                     | 44.46  | 9.12                 | -7.57               | 16.69             |                |                |                       |
| 5th                                 | 38.58  | 8.76                 | -7.57               | 16.32             | 41.54          | 398.46         | 1602.80               |
|                                     | 32.17  | 8.31                 | -7.57               | 15.88             |                |                |                       |
| 4th                                 | 25.75  | 7.80                 | -7.57               | 15.37             | 36.11          | 434.56         | 929.74                |
|                                     | 20.83  | 7.34                 | -7.57               | 14.91             |                |                |                       |
| P6                                  | 15.92  | 6.80                 | -7.57               | 14.37             | 38.56          | 473.13         | 613.81                |
|                                     | 7.96   | 6.63                 | -7.57               | 14.20             |                |                |                       |
| Plaza Level                         | 0.00   | 6.63                 | -7.57               | 14.20             | 23.73          | 496.85         | 0.00                  |
|                                     |        |                      |                     |                   |                |                | 36080.47              |

| Base Shear                | 496.85 Kips     |
|---------------------------|-----------------|
| <b>Overturning Moment</b> | 36080.47 Kip-ft |



Figure 13: East-West Design Pressure Diagram

#### Wind Pressure – North-South

| Table 8: North-South Design Pressures |        |                      |                     |                   |                |                |                       |
|---------------------------------------|--------|----------------------|---------------------|-------------------|----------------|----------------|-----------------------|
|                                       | Height | Windward<br>Pressure | Leeward<br>Pressure | Total<br>Pressure | Total<br>Force | Story<br>Shear | Overturning<br>Moment |
|                                       | (ft)   | (psf)                | (psf)               | (psf)             | (kips)         | (kips)         | (kip-ft)              |
|                                       |        |                      |                     |                   |                |                |                       |
| Penthouse                             | 142.00 | 13.02                | -5.44               | 18.46             | 10.16          | 10.16          | 1442.90               |
|                                       | 131.42 | 12.74                | -5.44               | 18.18             |                |                |                       |
| Main Roof                             | 120.83 | 12.44                | -5.44               | 17.88             | 28.11          | 38.27          | 3396.78               |
|                                       | 114.96 | 12.26                | -5.44               | 17.70             |                |                |                       |
| 11th                                  | 109.08 | 12.08                | -5.44               | 17.52             | 24.57          | 62.84          | 2679.92               |
|                                       | 103.21 | 11.89                | -5.44               | 17.33             |                |                |                       |
| 10th                                  | 97.33  | 11.69                | -5.44               | 17.13             | 24.01          | 86.85          | 2337.01               |
|                                       | 91.46  | 11.48                | -5.44               | 16.93             |                |                |                       |
| 9th                                   | 85.58  | 11.27                | -5.44               | 16.71             | 23.40          | 110.25         | 2002.73               |
|                                       | 79.71  | 11.04                | -5.44               | 16.48             |                |                |                       |
| 8th                                   | 73.83  | 10.80                | -5.44               | 16.24             | 22.73          | 132.98         | 1677.93               |
|                                       | 67.96  | 10.55                | -5.44               | 15.99             |                |                |                       |
| 7th                                   | 62.08  | 10.28                | -5.44               | 15.72             | 21.97          | 154.94         | 1363.68               |
|                                       | 56.21  | 9.99                 | -5.44               | 15.43             |                |                |                       |
| 6th                                   | 50.33  | 9.68                 | -5.44               | 15.12             | 21.09          | 176.03         | 1061.38               |
|                                       | 44.46  | 9.35                 | -5.44               | 14.79             |                |                |                       |
| 5th                                   | 38.58  | 8.97                 | -5.44               | 14.42             | 20.91          | 196.94         | 806.90                |
|                                       | 32.17  | 8.52                 | -5.44               | 13.96             |                |                |                       |
| 4th                                   | 25.75  | 8.00                 | -5.44               | 13.44             | 18.00          | 214.94         | 463.41                |
|                                       | 20.83  | 7.53                 | -5.44               | 12.97             |                |                |                       |
| P6                                    | 15.92  | 6.97                 | -5.44               | 12.41             | 19.01          | 233.95         | 302.53                |
|                                       | 7.96   | 6.80                 | -5.44               | 12.24             |                |                |                       |
| Plaza Level                           | 0.00   | 6.80                 | -5.44               | 12.24             | 11.69          | 245.63         | 0.00                  |
|                                       |        |                      |                     |                   |                |                | 17535.19              |

| Base Shear                | 245.63 Kips     |
|---------------------------|-----------------|
| <b>Overturning Moment</b> | 17535.19 Kip-ft |



Figure 14: North-South Design Pressure Diagram

#### Wind Load Summary

Through calculating the wind pressures on the structure, it becomes evident that the wind load in the East-West direction is the most critical. This can be seen by comparing the calculated base shear and overturning moment in each direction. The base shear in the East-West direction is 496.85 kips, compared to the value of 245.63 kips in the North-South direction. The overturning moment follows this relationship as well, with a value in the East-West direction nearly twice as large as that of the North-South direction.

This result was well anticipated when considering the length of each side of the structure. The East and West sides are measured to be 210' in length while the North and South faces are only 120' in length. A larger surface area would in turn face more pressure from the wind which translates to a larger force on the structure in said direction. This observation is in agreement with the results obtained from the calculations and analysis.

The benefit in using ASCE 7-05 is that it aids the designer in translating wind speed to a wind pressure which may be applied to the face of the structure. This pressure is then calculated into a resultant force (based on tributary area) which may be assumed to act at each story. This follows the actual load path of the wind force. In order for the floor to transfer the lateral load to shear walls and moment frames, it must be assumed to be a rigid diaphragm. Within MET II, the shear walls are at the core of the structure and also act to create the elevator shaft. The combination of concrete columns and post tension beams (as well as the rigid slab) form the moment frame systems.

The wind design variables present on the structural documents were consistent with the values determined and used in this analysis. The final design forces used by the structural engineer, however, were not available for direct comparison to the results of this analysis.



Figure 15: Exterior View from Across Rockville Pike – by JMV

#### Lateral Analysis - Seismic Load

#### Seismic Load

The City of Rockville is not known for high seismic activity. Still it is part of good practice to design a building to withstand such ground motion as the load case may control the design of the lateral system. For this analysis, chapters 11 and 12 of ASCE 7-05 were employed. Using site features and building characteristics (such as seismic ground moth ion values and the weight of the dead load on the structure), forces could be derived based on the building's expected response. This method allows for the base shear and overturning moment of the structure to be determined. These results may then be compared to values calculated in other loading scenarios in order to determine the design value for the structure's lateral system.

The Plaza Level and parking levels below grade did not contribute to the calculations as they were considered to be at or below the seismic base. The weight of the building that was calculated included all dead loads (i.e. concrete structure, superimposed, etc.) plus 50% of the live load for partitions and the full operating weight of equipment.

The equivalent lateral force method was determined to be applicable to this analysis. The main calculations and results of this analysis may be found on the pages that follow. Detailed calculations of other variables (such as building weights) are available in Appendix B.



Figure 16: Exterior View from Across Rockville Pike Intersection - by JMV

| Table 9: Seismic Design Variables     |                 |         |                 |  |  |  |
|---------------------------------------|-----------------|---------|-----------------|--|--|--|
|                                       |                 |         | ASCE Reference  |  |  |  |
| Soil Classification                   |                 | C       |                 |  |  |  |
| Occupancy Category                    |                 | II      | Table 1-1       |  |  |  |
| Importance Factor                     | l <sub>e</sub>  | 1.0     | Table 11.5-1    |  |  |  |
| Structural System                     |                 | F       | Table 12.2-1    |  |  |  |
| Spectral Response Acceleration, Short | Ss              | 0.156g  | USGC Website    |  |  |  |
| Spectral Response Acceleration, 1 s   | S <sub>1</sub>  | 0.051g  | USGC Website    |  |  |  |
| Site Coefficient                      | Fa              | 1.2     | Table 11.4-1    |  |  |  |
| Site Coefficient                      | F <sub>v</sub>  | 1.7     | Table 11.4-2    |  |  |  |
| MCE Spectral Response Accel., Short   | S <sub>MS</sub> | 0.188   | Eq. 11.4-1      |  |  |  |
| MCE Spectral Response Accel., 1 s     | S <sub>M1</sub> | 0.086   | Eq. 11.4-2      |  |  |  |
| Design Spectral Acceleration, Short   | S <sub>DS</sub> | 0.1248  | Eq. 11.4-3      |  |  |  |
| Design Spectral Acceleration, 1 s     | S <sub>D1</sub> | 0.0578  | Eq. 11.4-4      |  |  |  |
| Seismic Design Category               | S <sub>DC</sub> | Α       | Tables 11.6-1,2 |  |  |  |
| Response Modification Coefficient     | R               | 4.5     | Table 12.2-1    |  |  |  |
| Approximate Period Parameter          | Ct              | 0.02    | Table 12.8-2    |  |  |  |
| Building Height                       | h <sub>n</sub>  | 142'    | Arch Dwg.       |  |  |  |
| Approximate Period Parameter          | x               | 0.75    | Table 12.8-2    |  |  |  |
| Approx. Fundamental Period            | Ta              | 0.823 s | Eq. 12.8-7      |  |  |  |
| Long Period Transition Period         | TL              | 8.0 s   | Fig. 22-15      |  |  |  |
| Seismic Response Coefficient          | Cs              | 0.0156  | Eq.'s 12.8-2,3  |  |  |  |
| Structure Period Exponent             | k               | 1.161   | Section 12.8.3  |  |  |  |
|                                       |                 |         |                 |  |  |  |

| Table 10: Design Values     |               |  |  |  |
|-----------------------------|---------------|--|--|--|
| Effective Seismic<br>Weight | 41163 kips    |  |  |  |
| Base Shear                  | 642.7 kips    |  |  |  |
| Overturning<br>Moment       | 57708 kips-ft |  |  |  |



Figure 17: Diagram of Design Values

| Table 11: Seismic Calculations |                 |        |                             |                                     |                              |  |
|--------------------------------|-----------------|--------|-----------------------------|-------------------------------------|------------------------------|--|
| Level                          | Story<br>Weight | Height | Forces<br>(F <sub>x</sub> ) | Story<br>Shear<br>(V <sub>x</sub> ) | Moments<br>(M <sub>x</sub> ) |  |
|                                | (kips)          | (ft)   | (kips)                      | (kips)                              | (k-ft)                       |  |
| Pent Roof                      | 887             | 142.00 | 30.8                        | 30.8                                | 4375.638                     |  |
| Main Roof                      | 4342            | 120.83 | 125.1                       | 155.9                               | 15111                        |  |
| 11th Floor                     | 3897            | 109.08 | 99.7                        | 255.5                               | 10871.97                     |  |
| 10th Floor                     | 3996            | 97.33  | 89.5                        | 345.1                               | 8714.116                     |  |
| 9th Floor                      | 3996            | 85.58  | 77.1                        | 422.2                               | 6598.774                     |  |
| 8th Floor                      | 3996            | 73.83  | 65.0                        | 487.1                               | 4795.579                     |  |
| 7th Floor                      | 3996            | 62.08  | 53.1                        | 540.2                               | 3297.158                     |  |
| 6th Floor                      | 3996            | 50.33  | 41.6                        | 581.9                               | 2095.07                      |  |
| 5th Floor                      | 3996            | 38.58  | 30.6                        | 612.4                               | 1179.39                      |  |
| 4th Floor                      | 3996            | 25.75  | 19.1                        | 631.5                               | 492.1244                     |  |
| P6                             | 4065            | 15.92  | 11.1                        | 642.7                               | 176.99                       |  |
| Plaza Level                    | -               | 0.00   | -                           | -                                   | -                            |  |
|                                |                 |        |                             |                                     |                              |  |
| Total                          | 41163           | -      | 642.7                       | -                                   | 57707.81                     |  |

#### Seismic Load Summary

The seismic analysis executed for this document provided a design base shear and overturning moment of 642.7 kips and 57708 kip-ft respectively. These values were computed using the equivalent lateral force method as defined in ASCE 7-05. This method allows the designer to interpret the expected ground motion and characteristics of the structure into the design forces shown.

The seismic design values determined by the structural engineer of record were not available for direct comparison. However, when comparing the found seismic forces to the results calculated for wind, we find that seismic conditions do control in this case.

#### Closing

Through this study, a better understanding of Rockville Metro Plaza II's structural systems may be achieved.

In determining the loading and geometry of the structure, the reasoning behind the size of structural components such as columns and slabs becomes clearer. In further studies the loading may be applied to analysis of the various bays of the structure in order to specifically evaluate the roofing and flooring systems of MET II. As bay loads are determined, the loading of the post tension beams, columns, and foundations may be therefore found. The design of these items may be considered as well and their capacity examined.

Through the calculation of wind and seismic loading, a similar observation may be viewed over the lateral system. This analysis provides initial



Figure 18: Exterior Perspective – by JMV

supporting evidence as to the choice of lateral system chosen by the structural designer. By comparison of these calculations, it was found that seismic controlled the design of the lateral system as this analysis produced a higher value for the base shear as well as the overturning moment on the structure. To further study the lateral system of MET II, lateral loads could be applied to the shear wall system to verify the size and amount provided.

## Appendix A

Wind

|            | J.M.V.                  | TECH 2 WEND                          | 1                  |  |  |  |  |  |  |
|------------|-------------------------|--------------------------------------|--------------------|--|--|--|--|--|--|
| ~          | Calculation For         | Wind Analysis                        |                    |  |  |  |  |  |  |
|            | ASCE 7-05 > Martial 2 - |                                      |                    |  |  |  |  |  |  |
|            | Method                  | Method 2 -> Building Meets reg 6.5.1 |                    |  |  |  |  |  |  |
|            | Basic Wind              | Speed                                |                    |  |  |  |  |  |  |
|            | Rackvill                | le, MD V = 90 mph                    | [Fig. 6-1]         |  |  |  |  |  |  |
| 9          | Directionality          | Factor                               |                    |  |  |  |  |  |  |
| EINNY      | Ka = 0                  | .85                                  | [Toble 6-4]        |  |  |  |  |  |  |
|            | Importance              | Factor                               |                    |  |  |  |  |  |  |
|            | $T_{m} = I_{n}$         | 0                                    | [Toble 6-1]        |  |  |  |  |  |  |
|            | Exposure Ca-            | tegory: B                            |                    |  |  |  |  |  |  |
| ~          | Topographic             | Factor                               |                    |  |  |  |  |  |  |
|            | W2= - 1.                | 0                                    | [sect. 6.5.7]      |  |  |  |  |  |  |
|            | Determine Ve            | locity Pressure Exposure Coef        | ficient            |  |  |  |  |  |  |
|            | Kz., k                  | in -> See calc tables for val        | lues [Table 6-3]   |  |  |  |  |  |  |
|            | Determine Væ            | locity Pressures                     | 6 7                |  |  |  |  |  |  |
|            | 82,94                   | ,= 0.00256 Kz Kzk Ka V-1             | [Eq. 6-15]         |  |  |  |  |  |  |
|            | Determine Bu            | ilding Enclosure : Fully Enclo       | osod [Sect, 6,5.9] |  |  |  |  |  |  |
|            | G Cpn =                 | + 1.5 windred                        | F                  |  |  |  |  |  |  |
|            | G - hiel il i           | Deres Decesse                        | - F- 4-5]          |  |  |  |  |  |  |
| all your a | Comulmed Net            | Chy -> see al title for              | where I            |  |  |  |  |  |  |
|            | Determine Pres          | Scient Coefficients                  |                    |  |  |  |  |  |  |
| 0          | Cp =                    | 0.8 (windward), -0.5(leeward)        | [ Fig 6-6]         |  |  |  |  |  |  |
|            | G7 Cp; =                | I 0,18                               | L Fig 6-5]         |  |  |  |  |  |  |
|            |                         |                                      |                    |  |  |  |  |  |  |

|       | J.M.V. TECH 2 WIND                                                                                                | 2                        |
|-------|-------------------------------------------------------------------------------------------------------------------|--------------------------|
| 0     | Determine Gust Effect Factor<br>G = 0.925 $\left(\frac{(1+1.7I_2\sqrt{g_a^2Q^2+g_R^2R^2})}{(1+1.7g_vI_2)}\right)$ | [Sect 6.5.8]<br>[Eq 6-8] |
|       | $I_{z} = c (33/\bar{z})^{1/6}$                                                                                    | [E2 6-5]                 |
|       | $Q = \sqrt{\frac{1+0.63 \left(\frac{B+h}{L_2}\right)^{0.63}}{(\frac{B+h}{L_2})^{0.63}}}$                          | [Eg 6-6]                 |
| ġ     | $L_{z} = l(\bar{z}/10)^{\bar{\epsilon}}$                                                                          | [Eq 6-7]                 |
| - Ann | $\widetilde{\nabla}_{z} = \widetilde{b} \left( \overline{z} / 33 \right)^{2} \vee \left( \frac{88}{60} \right)$   | [Eq 6-14]                |
| ~     | $\mathcal{N}_{,}=(n,L_{\bar{z}})/(\bar{v}_{\bar{z}})$                                                             | [EE 6-12]                |
|       | $R_n = 7.47 N_1 / (1 + 10.3 N_1)^{5/3}$                                                                           | [Eg 6-11]                |
|       | $R_{e} = \frac{1}{2}n - \frac{1}{2}n^{2}(1 - e^{-2n})$                                                            | [Eq 6-13a]               |
| ~     | $Re=R_h$ for $\eta=4.6n, h/v_z$                                                                                   |                          |
|       | $R_{E} = R_{B}$ for $\mathcal{T} = 4.6n, EB/\bar{v}_{z}$                                                          |                          |
|       | $R_{e}=R_{L}-for n=15H n_{1}L/v_{2}$                                                                              |                          |
|       | $R = V(1/\beta) R_n R_h R_B (0.53 + 0.47 R_L)$                                                                    | [E2 6-10]                |
|       | n, (approx) = 100/H                                                                                               | ( Eg                     |
|       | $g_{R} = \sqrt{2\ln(3,600n_{1}) + 0.577}/(V_{2\ln(3,600n_{1})})$                                                  | [Eg 6-9]                 |
|       | $g_q = g_v = 3.4$                                                                                                 | [Sect 6.5,8.2]           |
|       | Note building is considered flexible by sect 6                                                                    | 5.2                      |
|       | Determine Design wind Pressures                                                                                   |                          |
|       | Windword: Pz = gz GCp - gh (GCp;)                                                                                 |                          |
|       | Leeward : Ph = gh GCp - gh (GCpi)                                                                                 |                          |
|       | See calc tables for results                                                                                       |                          |
|       |                                                                                                                   |                          |

#### Wind: East-West Direction

| Table 12: East-West Design                   | Factors |
|----------------------------------------------|---------|
|                                              |         |
| Exposure B                                   |         |
| Case 2                                       |         |
| L                                            | 120 ft  |
| В                                            | 210 ft  |
| L/B                                          | 0.571   |
| Natural Period (approx.) (n <sub>1</sub> )   | 0.833   |
| Damping Coeff. (approx.) (β)                 | 0.02    |
| Basic Wind Speed (V)                         | 90 mph  |
| Wind Directionality Factor (K <sub>d</sub> ) | 0.85    |
| Importance Factor (I)                        | 1.0     |
| Exposure Category                            | В       |
| Topographical Factor (K <sub>zt</sub> )      | 1.0     |
| Gust Effect Factor (G)                       | 0.825   |
| C <sub>p</sub> Windward                      | 0.8     |
| C <sub>p</sub> Leeward                       | -0.5    |
| G <sub>cpi</sub> Windward                    | 0.18    |
| G <sub>cpi</sub> Leeward                     | -0.18   |
| G <sub>pn</sub> Windward                     | 1.5     |
| G <sub>pn</sub> Leeward                      | -1.0    |
|                                              |         |

| Table 13: East-West Calculation of Design Pressures |        |                                 |                                 |                      |                      |                 |                 |                   |
|-----------------------------------------------------|--------|---------------------------------|---------------------------------|----------------------|----------------------|-----------------|-----------------|-------------------|
|                                                     | Height | K <sub>z</sub> , K <sub>h</sub> | q <sub>z</sub> , q <sub>h</sub> | External<br>Pressure | Internal<br>Pressure | Net<br>Positive | Net<br>Negative | Total<br>Pressure |
|                                                     | (ft)   |                                 |                                 | (psf)                | (psf)                | (psf)           | (psf)           | (psf)             |
|                                                     |        |                                 |                                 |                      |                      |                 |                 |                   |
| Penthouse                                           | 142.00 | 1.09                            | 19.25                           | 12.71                | 3.47                 | 9.24            | 16.17           | 20.27             |
|                                                     | 131.42 | 1.07                            | 18.83                           | 12.43                | 3.47                 | 8.96            | 15.89           | 20.00             |
| Main Roof                                           | 120.83 | 1.04                            | 18.39                           | 12.13                | 3.47                 | 8.67            | 15.60           | 19.70             |
|                                                     | 114.96 | 1.03                            | 18.13                           | 11.96                | 3.47                 | 8.50            | 15.43           | 19.53             |
| 11th                                                | 109.08 | 1.01                            | 17.86                           | 11.78                | 3.47                 | 8.32            | 15.25           | 19.35             |
|                                                     | 103.21 | 1.00                            | 17.58                           | 11.60                | 3.47                 | 8.13            | 15.06           | 19.17             |
| 10th                                                | 97.33  | 0.98                            | 17.28                           | 11.41                | 3.47                 | 7.94            | 14.87           | 18.97             |
|                                                     | 91.46  | 0.96                            | 16.98                           | 11.21                | 3.47                 | 7.74            | 14.67           | 18.77             |
| 9th                                                 | 85.58  | 0.95                            | 16.66                           | 10.99                | 3.47                 | 7.53            | 14.46           | 18.56             |
|                                                     | 79.71  | 0.93                            | 16.33                           | 10.77                | 3.47                 | 7.31            | 14.24           | 18.34             |
| 8th                                                 | 73.83  | 0.91                            | 15.97                           | 10.54                | 3.47                 | 7.07            | 14.01           | 18.11             |
|                                                     | 67.96  | 0.88                            | 15.60                           | 10.29                | 3.47                 | 6.83            | 13.76           | 17.86             |
| 7th                                                 | 62.08  | 0.86                            | 15.20                           | 10.03                | 3.47                 | 6.57            | 13.50           | 17.60             |
|                                                     | 56.21  | 0.84                            | 14.77                           | 9.75                 | 3.47                 | 6.28            | 13.22           | 17.32             |
| 6th                                                 | 50.33  | 0.81                            | 14.32                           | 9.45                 | 3.47                 | 5.98            | 12.91           | 17.02             |
|                                                     | 44.46  | 0.78                            | 13.82                           | 9.12                 | 3.47                 | 5.65            | 12.58           | 16.69             |
| 5th                                                 | 38.58  | 0.75                            | 13.27                           | 8.76                 | 3.47                 | 5.29            | 12.22           | 16.32             |
|                                                     | 32.17  | 0.71                            | 12.60                           | 8.31                 | 3.47                 | 4.85            | 11.78           | 15.88             |
| 4th                                                 | 25.75  | 0.67                            | 11.82                           | 7.80                 | 3.47                 | 4.34            | 11.27           | 15.37             |
|                                                     | 20.83  | 0.63                            | 11.13                           | 7.34                 | 3.47                 | 3.88            | 10.81           | 14.91             |
| P6                                                  | 15.92  | 0.58                            | 10.30                           | 6.80                 | 3.47                 | 3.33            | 10.26           | 14.37             |
|                                                     | 7.96   | 0.57                            | 10.05                           | 6.63                 | 3.47                 | 3.16            | 10.10           | 14.20             |
| Plaza<br>Level                                      | 0.00   | 0.57                            | 10.05                           | 6.63                 | 3.47                 | 3.16            | 10.10           | 14.20             |
|                                                     |        |                                 |                                 |                      |                      |                 |                 |                   |
| Leeward                                             | 120    | 1.04                            | 18.35                           | -7.57                | 3.47                 | -11.03          | -4.10           | -                 |

| Table 14: East-West Design Pressures |        |                      |                     |                   |                |                |                    |  |
|--------------------------------------|--------|----------------------|---------------------|-------------------|----------------|----------------|--------------------|--|
|                                      | Height | Windward<br>Pressure | Leeward<br>Pressure | Total<br>Pressure | Total<br>Force | Story<br>Shear | Moment<br>Windward |  |
|                                      | (ft)   | (psf)                | (psf)               | (psf)             | (kips)         | (kips)         | (k-ft)             |  |
|                                      |        |                      |                     |                   |                |                |                    |  |
| Penthouse                            | 142.00 | 12.71                | -7.57               | 20.27             | 28.97          | 28.97          | 4113.36            |  |
|                                      | 131.42 | 12.43                | -7.57               | 20.00             |                |                |                    |  |
| Main Roof                            | 120.83 | 12.13                | -7.57               | 19.70             | 59.28          | 88.24          | 7162.70            |  |
|                                      | 114.96 | 11.96                | -7.57               | 19.53             |                |                |                    |  |
| 11th                                 | 109.08 | 11.78                | -7.57               | 19.35             | 47.52          | 135.77         | 5184.07            |  |
|                                      | 103.21 | 11.60                | -7.57               | 19.17             |                |                |                    |  |
| 10th                                 | 97.33  | 11.41                | -7.57               | 18.97             | 46.57          | 182.34         | 4533.05            |  |
|                                      | 91.46  | 11.21                | -7.57               | 18.77             |                |                |                    |  |
| 9th                                  | 85.58  | 10.99                | -7.57               | 18.56             | 45.53          | 227.87         | 3896.77            |  |
|                                      | 79.71  | 10.77                | -7.57               | 18.34             |                |                |                    |  |
| 8th                                  | 73.83  | 10.54                | -7.57               | 18.11             | 44.38          | 272.25         | 3276.68            |  |
|                                      | 67.96  | 10.29                | -7.57               | 17.86             |                |                |                    |  |
| 7th                                  | 62.08  | 10.03                | -7.57               | 17.60             | 43.08          | 315.33         | 2674.59            |  |
|                                      | 56.21  | 9.75                 | -7.57               | 17.32             |                |                |                    |  |
| 6th                                  | 50.33  | 9.45                 | -7.57               | 17.02             | 41.58          | 356.91         | 2092.90            |  |
|                                      | 44.46  | 9.12                 | -7.57               | 16.69             |                |                |                    |  |
| 5th                                  | 38.58  | 8.76                 | -7.57               | 16.32             | 41.54          | 398.46         | 1602.80            |  |
|                                      | 32.17  | 8.31                 | -7.57               | 15.88             |                |                |                    |  |
| 4th                                  | 25.75  | 7.80                 | -7.57               | 15.37             | 36.11          | 434.56         | 929.74             |  |
|                                      | 20.83  | 7.34                 | -7.57               | 14.91             |                |                |                    |  |
| P6                                   | 15.92  | 6.80                 | -7.57               | 14.37             | 38.56          | 473.13         | 613.81             |  |
|                                      | 7.96   | 6.63                 | -7.57               | 14.20             |                |                |                    |  |
| Plaza Level                          | 0.00   | 6.63                 | -7.57               | 14.20             | 23.73          | 496.85         | 0.00               |  |
|                                      |        |                      |                     |                   |                |                | 36080.47           |  |

| Base Shear                | 496.85 Kips     |
|---------------------------|-----------------|
| <b>Overturning Moment</b> | 36080.47 Kip-ft |

#### Wind: North-South Direction

in the

| Table 15: North-South Design Factors         |        |  |  |  |
|----------------------------------------------|--------|--|--|--|
|                                              |        |  |  |  |
| Exposure B                                   |        |  |  |  |
| Case 2                                       |        |  |  |  |
| L                                            | 210 ft |  |  |  |
| В                                            | 120 ft |  |  |  |
| L/B                                          | 1.75   |  |  |  |
| Natural Period (approx.) (n <sub>1</sub> )   | 0.833  |  |  |  |
| Damping Coeff. (approx.) (β)                 | 0.02   |  |  |  |
| Basic Wind Speed (V)                         | 90 mph |  |  |  |
| Wind Directionality Factor (K <sub>d</sub> ) | 0.85   |  |  |  |
| Importance Factor (I)                        | 1.0    |  |  |  |
| Exposure Category                            | В      |  |  |  |
| Topographical Factor (K <sub>zt</sub> )      | 1.0    |  |  |  |
| Gust Effect Factor (G)                       | 0.845  |  |  |  |
| C <sub>p</sub> Windward                      | 0.8    |  |  |  |
| C <sub>p</sub> Leeward                       | -0.5   |  |  |  |
| G <sub>cpi</sub> Windward                    | 0.18   |  |  |  |
| G <sub>cpi</sub> Leeward                     | -0.18  |  |  |  |
| G <sub>pn</sub> Windward                     | 1.5    |  |  |  |
| G <sub>pn</sub> Leeward                      | -1.0   |  |  |  |
|                                              |        |  |  |  |

| Table 16: North-South Calculation of Design Pressures |        |                                 |                                 |                      |                      |                 |                 |                   |
|-------------------------------------------------------|--------|---------------------------------|---------------------------------|----------------------|----------------------|-----------------|-----------------|-------------------|
|                                                       | Height | K <sub>z</sub> , K <sub>h</sub> | q <sub>z</sub> , q <sub>h</sub> | External<br>Pressure | Internal<br>Pressure | Net<br>Positive | Net<br>Negative | Total<br>Pressure |
|                                                       | (ft)   |                                 |                                 | (psf)                | (psf)                | (psf)           | (psf)           | (psf)             |
|                                                       |        |                                 |                                 |                      |                      |                 |                 |                   |
| Penthouse                                             | 142.00 | 1.09                            | 19.25                           | 13.02                | 3.47                 | 9.56            | 16.49           | 18.46             |
|                                                       | 131.42 | 1.07                            | 18.83                           | 12.74                | 3.47                 | 9.27            | 16.20           | 18.18             |
| Main Roof                                             | 120.83 | 1.04                            | 18.39                           | 12.44                | 3.47                 | 8.97            | 15.90           | 17.88             |
|                                                       | 114.96 | 1.03                            | 18.13                           | 12.26                | 3.47                 | 8.79            | 15.73           | 17.70             |
| 11th                                                  | 109.08 | 1.01                            | 17.86                           | 12.08                | 3.47                 | 8.61            | 15.54           | 17.52             |
|                                                       | 103.21 | 1.00                            | 17.58                           | 11.89                | 3.47                 | 8.42            | 15.35           | 17.33             |
| 10th                                                  | 97.33  | 0.98                            | 17.28                           | 11.69                | 3.47                 | 8.23            | 15.16           | 17.13             |
|                                                       | 91.46  | 0.96                            | 16.98                           | 11.48                | 3.47                 | 8.02            | 14.95           | 16.93             |
| 9th                                                   | 85.58  | 0.95                            | 16.66                           | 11.27                | 3.47                 | 7.80            | 14.73           | 16.71             |
|                                                       | 79.71  | 0.93                            | 16.33                           | 11.04                | 3.47                 | 7.58            | 14.51           | 16.48             |
| 8th                                                   | 73.83  | 0.91                            | 15.97                           | 10.80                | 3.47                 | 7.34            | 14.27           | 16.24             |
|                                                       | 67.96  | 0.88                            | 15.60                           | 10.55                | 3.47                 | 7.08            | 14.02           | 15.99             |
| 7th                                                   | 62.08  | 0.86                            | 15.20                           | 10.28                | 3.47                 | 6.82            | 13.75           | 15.72             |
|                                                       | 56.21  | 0.84                            | 14.77                           | 9.99                 | 3.47                 | 6.53            | 13.46           | 15.43             |
| 6th                                                   | 50.33  | 0.81                            | 14.32                           | 9.68                 | 3.47                 | 6.22            | 13.15           | 15.12             |
|                                                       | 44.46  | 0.78                            | 13.82                           | 9.35                 | 3.47                 | 5.88            | 12.81           | 14.79             |
| 5th                                                   | 38.58  | 0.75                            | 13.27                           | 8.97                 | 3.47                 | 5.51            | 12.44           | 14.42             |
|                                                       | 32.17  | 0.71                            | 12.60                           | 8.52                 | 3.47                 | 5.05            | 11.99           | 13.96             |
| 4th                                                   | 25.75  | 0.67                            | 11.82                           | 8.00                 | 3.47                 | 4.53            | 11.46           | 13.44             |
|                                                       | 20.83  | 0.63                            | 11.13                           | 7.53                 | 3.47                 | 4.06            | 10.99           | 12.97             |
| P6                                                    | 15.92  | 0.58                            | 10.30                           | 6.97                 | 3.47                 | 3.50            | 10.43           | 12.41             |
|                                                       | 7.96   | 0.57                            | 10.05                           | 6.80                 | 3.47                 | 3.33            | 10.26           | 12.24             |
| Plaza<br>Level                                        | 0.00   | 0.57                            | 10.05                           | 6.80                 | 3.47                 | 3.33            | 10.26           | 12.24             |
|                                                       |        |                                 |                                 |                      |                      |                 |                 |                   |
| Leeward                                               | 120    | 1.04                            | 18.39                           | -5.44                | 3.47                 | -8.91           | -1.98           | -                 |

| Table 17: North-South Design Pressures |        |                      |                     |                   |                |                |                    |
|----------------------------------------|--------|----------------------|---------------------|-------------------|----------------|----------------|--------------------|
|                                        | Height | Windward<br>Pressure | Leeward<br>Pressure | Total<br>Pressure | Total<br>Force | Story<br>Shear | Moment<br>Windward |
|                                        | (ft)   | (psf)                | (psf)               | (psf)             | (kips)         | (kips)         | (kip-ft)           |
|                                        |        |                      |                     |                   |                |                |                    |
| Penthouse                              | 142.00 | 13.02                | -5.44               | 18.46             | 10.16          | 10.16          | 1442.90            |
|                                        | 131.42 | 12.74                | -5.44               | 18.18             |                |                |                    |
| Main Roof                              | 120.83 | 12.44                | -5.44               | 17.88             | 28.11          | 38.27          | 3396.78            |
|                                        | 114.96 | 12.26                | -5.44               | 17.70             |                |                |                    |
| 11th                                   | 109.08 | 12.08                | -5.44               | 17.52             | 24.57          | 62.84          | 2679.92            |
|                                        | 103.21 | 11.89                | -5.44               | 17.33             |                |                |                    |
| 10th                                   | 97.33  | 11.69                | -5.44               | 17.13             | 24.01          | 86.85          | 2337.01            |
|                                        | 91.46  | 11.48                | -5.44               | 16.93             |                |                |                    |
| 9th                                    | 85.58  | 11.27                | -5.44               | 16.71             | 23.40          | 110.25         | 2002.73            |
|                                        | 79.71  | 11.04                | -5.44               | 16.48             |                |                |                    |
| 8th                                    | 73.83  | 10.80                | -5.44               | 16.24             | 22.73          | 132.98         | 1677.93            |
|                                        | 67.96  | 10.55                | -5.44               | 15.99             |                |                |                    |
| 7th                                    | 62.08  | 10.28                | -5.44               | 15.72             | 21.97          | 154.94         | 1363.68            |
|                                        | 56.21  | 9.99                 | -5.44               | 15.43             |                |                |                    |
| 6th                                    | 50.33  | 9.68                 | -5.44               | 15.12             | 21.09          | 176.03         | 1061.38            |
|                                        | 44.46  | 9.35                 | -5.44               | 14.79             |                |                |                    |
| 5th                                    | 38.58  | 8.97                 | -5.44               | 14.42             | 20.91          | 196.94         | 806.90             |
|                                        | 32.17  | 8.52                 | -5.44               | 13.96             |                |                |                    |
| 4th                                    | 25.75  | 8.00                 | -5.44               | 13.44             | 18.00          | 214.94         | 463.41             |
|                                        | 20.83  | 7.53                 | -5.44               | 12.97             |                |                |                    |
| P6                                     | 15.92  | 6.97                 | -5.44               | 12.41             | 19.01          | 233.95         | 302.53             |
|                                        | 7.96   | 6.80                 | -5.44               | 12.24             |                |                |                    |
| Plaza Level                            | 0.00   | 6.80                 | -5.44               | 12.24             | 11.69          | 245.63         | 0.00               |
|                                        |        |                      |                     |                   |                |                | 17535.19           |

| Base Shear                | 245.63 Kips     |
|---------------------------|-----------------|
| <b>Overturning Moment</b> | 17535.19 Kip-ft |

## **Appendix B**

### Seismic

|             | J.M.V.                                                         | TECH 2 SEISMIC                                                                      | 1                  |
|-------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------|
| •           | Calculation Son<br>Not detached<br>Not Agricult<br>Not Special | r Seismik Analysis<br>10 2 Family Dwelling<br>rul Sturage Storage<br>Considerations | pmpt [sect 11,1.2] |
| Second Prov | Seismit Ground                                                 | d Motion Values                                                                     |                    |
|             | $D_{1}S_{5} = 0$                                               | , 156 g                                                                             | [Fig 22-1]         |
| ġ           | 5, = 0.                                                        | 051 9                                                                               | [Fig 22-4]         |
| Anna and    | 5                                                              | , 20.04 & \$5 20.15                                                                 | [Sect, 11,4,1]     |
| N           | Determine Soil                                                 | site Class -> C                                                                     |                    |
|             | Det o Sms = 1                                                  | $FaS_s = (1.2)(0.156)$                                                              | [E2, 11.4-1]       |
|             | Smi = F                                                        | 5, = (1,7) (0.051)                                                                  | [Ez. 11.4-2]       |
|             | E S DS = 3                                                     | 3 5ms = 0,1248                                                                      | [Eg, 11,4-3]       |
| 0           | 50, = <sup>2</sup> /                                           | 350, = 0.0578                                                                       | [EZ, 11,4-4]       |
|             | Seismic Desig                                                  | in Cotegory                                                                         |                    |
|             | 505 < C                                                        | 2,167 - A                                                                           | [TABLE 11.6-1]     |
|             | Spi < c                                                        | 0.067 → A                                                                           | [Toble 11.6-2]     |
|             | Determine o                                                    | companies Category -> II                                                            |                    |
|             | <i>t.</i>                                                      | Importance Factor = 1.0                                                             | [Toble 1-1]        |
|             | - Sector                                                       | an 11.6 requirements for simplified                                                 | design             |
|             |                                                                | • I, I o TT -> Yes<br>• S, <0.75 -> Yes<br>• h < 40' -> No                          |                    |
|             |                                                                | 50 Simplified does n                                                                | ot apply           |
| _           |                                                                |                                                                                     |                    |
| 0           |                                                                |                                                                                     |                    |
|             |                                                                |                                                                                     |                    |
|             |                                                                |                                                                                     |                    |
|             |                                                                |                                                                                     |                    |

|       | J. M.V.                                                     | TECH 2 SEISMIC                                                                                                                      | 2                           |
|-------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 0     | Pormitted Anoly<br>• Equivalent<br>• Model R<br>• Seismic R | ytical Procedures -> SDC B<br>t Lateral Force Analysis<br>esponse Spectrum Analysis<br>Response History Procedures                  | [Toble 12.6-1]              |
|       | Use Equivalent<br>Determine Rea                             | Lateral Force Analysis<br>Madification Factor                                                                                       |                             |
| anemy | F She<br>fr<br>fr                                           | arwall Frame Interactive system<br>ith ordinary reinforced concrete moment<br>sumes & ordinary rein. concrete shear<br>alls R = 4.5 | [Toble 12.2-1]<br>R         |
|       | Determine Approx                                            | , Fundamental Period                                                                                                                |                             |
|       | $T_a = C_{\pm} h$                                           | $n^{\times} = 0.02(142)^{0.75}$                                                                                                     | [Eg. 12.8-7]                |
| _     |                                                             | 9 > Ta                                                                                                                              | [Fig 22-15]                 |
| 0     | $C_{s} = \frac{S_{OS}}{R}$                                  | $a_{J_{I}} = \frac{0.1249}{4.5/1.0} = 0.02773$                                                                                      | [Eg 12.8-2]                 |
|       | nut tu ex                                                   | $coul C_{5} = \frac{S_{01}}{T(R/2)} = \frac{0.0578}{0.82(4.5/1)} = 0$                                                               | .0156 [Eq. 12.8-3]          |
|       | must                                                        | be greater than $0.01$ , $S_i = 0.051$                                                                                              | < 0.6 [Et 12.8-5]           |
|       | 2. Cs                                                       | = 0.0156                                                                                                                            | [Sart 12 8 -2]              |
|       | Determe St                                                  | The Earce                                                                                                                           | [2000 14.0 - 2]             |
|       | Cvx =                                                       | $\frac{W_{x}h_{x}^{k}}{\sum_{i=1}^{k}w_{i}h_{i}^{k}},  V = C_{S}W$                                                                  | [Eg 12.8-12]<br>[Eg 12.8-1] |
|       | F <sub>x</sub> = (                                          | Eva V                                                                                                                               | [EZ. 12.8-11]               |
| 0     | see .<br>E                                                  | figures and tables provided for<br>ouilding weights and force colculation                                                           | 5                           |
|       |                                                             |                                                                                                                                     |                             |

#### Level Self Weight

| Table 18: Penthouse Weight |                      |  |  |  |
|----------------------------|----------------------|--|--|--|
| Item                       | Design Weight (kips) |  |  |  |
| Beams                      | 77.9                 |  |  |  |
| Slab                       | 390                  |  |  |  |
| Roofing                    | 156                  |  |  |  |
| SDL                        | 39                   |  |  |  |
| Equipment                  | 120                  |  |  |  |
| Façade                     | 103.5                |  |  |  |
|                            |                      |  |  |  |
| Total                      | 886.4                |  |  |  |

| Table 19: Main Roof Weight |                      |  |  |  |
|----------------------------|----------------------|--|--|--|
| Item                       | Design Weight (kips) |  |  |  |
| Beams                      | 557.5                |  |  |  |
| Slab                       | 2269.1               |  |  |  |
| Columns                    | 150.4                |  |  |  |
| Roofing                    | 728.1                |  |  |  |
| Shear Wall                 | 196                  |  |  |  |
| Equipment                  | 52.8                 |  |  |  |
| SDL                        | 221                  |  |  |  |
| Façade                     | 167.6                |  |  |  |
|                            |                      |  |  |  |
| Total                      | 886.4                |  |  |  |

| Table 20: Office (11 <sup>th</sup> ) Weight |                      |  |  |  |
|---------------------------------------------|----------------------|--|--|--|
| Item                                        | Design Weight (kips) |  |  |  |
| Beams                                       | 557.3                |  |  |  |
| Slab                                        | 2269.1               |  |  |  |
| Columns                                     | 391.4                |  |  |  |
| Shear Wall                                  | 12.6                 |  |  |  |
| Partitions                                  | 194.6                |  |  |  |
| Equipment                                   | 23.7                 |  |  |  |
| SDL                                         | 110.5                |  |  |  |
| Façade                                      | 223.5                |  |  |  |
|                                             |                      |  |  |  |
| Total                                       | 3896.1               |  |  |  |

| Table 21: Office (Typ.) Weight |                      |  |  |  |
|--------------------------------|----------------------|--|--|--|
| Item                           | Design Weight (kips) |  |  |  |
| Beams                          | 538.4                |  |  |  |
| Slab                           | 2364.7               |  |  |  |
| Columns                        | 399.6                |  |  |  |
| Shear Wall                     | 12.6                 |  |  |  |
| Partitions                     | 204.2                |  |  |  |
| Equipment                      | 23.7                 |  |  |  |
| SDL                            | 115.3                |  |  |  |
| Façade                         | 223.5                |  |  |  |
|                                |                      |  |  |  |
| Total                          | 3995.4               |  |  |  |

| Table 22: P6 Level Weight |                      |  |  |  |
|---------------------------|----------------------|--|--|--|
| Item                      | Design Weight (kips) |  |  |  |
| Beams                     | 483.6                |  |  |  |
| Slab                      | 2548.2               |  |  |  |
| Columns                   | 322.0                |  |  |  |
| Drops                     | 158.0                |  |  |  |
| Shear Wall                | 12.6                 |  |  |  |
| Equipment                 | 2.2                  |  |  |  |
| SDL                       | 124.5                |  |  |  |
| Façade                    | 300.0                |  |  |  |
|                           |                      |  |  |  |
| Total                     | 4064.4               |  |  |  |

#### Seismic Calculations

| Table 23: Seismic Calculations |                 |        |                                            |                 |                             |                                  |                              |
|--------------------------------|-----------------|--------|--------------------------------------------|-----------------|-----------------------------|----------------------------------|------------------------------|
| Level                          | Story<br>Weight | Height | w <sub>x</sub> h <sub>x</sub> <sup>k</sup> | C <sub>vx</sub> | Forces<br>(F <sub>x</sub> ) | Story<br>Shear (V <sub>x</sub> ) | Moments<br>(M <sub>x</sub> ) |
|                                | (kips)          | (ft)   |                                            |                 | (kips)                      | (kips)                           | (k-ft)                       |
| Pent Roof                      | 887             | 142.00 | 280216.3                                   | 0.05            | 30.8                        | 30.8                             | 4375.638                     |
| Main Roof                      | 4342            | 120.83 | 1137226.0                                  | 0.19            | 125.1                       | 155.9                            | 15111                        |
| 11th Floor                     | 3897            | 109.08 | 906338.2                                   | 0.16            | 99.7                        | 255.5                            | 10871.97                     |
| 10th Floor                     | 3996            | 97.33  | 814145.5                                   | 0.14            | 89.5                        | 345.1                            | 8714.116                     |
| 9th Floor                      | 3996            | 85.58  | 701155.6                                   | 0.12            | 77.1                        | 422.2                            | 6598.774                     |
| 8th Floor                      | 3996            | 73.83  | 590648.2                                   | 0.10            | 65.0                        | 487.1                            | 4795.579                     |
| 7th Floor                      | 3996            | 62.08  | 482953.3                                   | 0.08            | 53.1                        | 540.2                            | 3297.158                     |
| 6th Floor                      | 3996            | 50.33  | 378515.1                                   | 0.06            | 41.6                        | 581.9                            | 2095.07                      |
| 5th Floor                      | 3996            | 38.58  | 277970.0                                   | 0.05            | 30.6                        | 612.4                            | 1179.39                      |
| 4th Floor                      | 3996            | 25.75  | 173795.3                                   | 0.03            | 19.1                        | 631.5                            | 492.1244                     |
| P6                             | 4065            | 15.92  | 101120.0                                   | 0.02            | 11.1                        | 642.7                            | 176.99                       |
| Plaza<br>Level                 | -               | 0.00   | -                                          | -               | -                           | -                                | -                            |
|                                |                 |        |                                            |                 |                             |                                  |                              |
| Total                          | 41163           | -      | 5844083.56                                 | 1.00            | 642.7                       | -                                | 57707.81                     |

| Table 24: Design Values     |               |  |
|-----------------------------|---------------|--|
| Effective Seismic<br>Weight | 41163 kips    |  |
| Base Shear                  | 642.7 kips    |  |
| Overturning<br>Moment       | 57708 kips-ft |  |

## **Appendix C**

### **Building Plans and Elevations**





Figure 22: Precast Connection Detail – S4.01 of CD's

## Appendix D

### **Photos**



Figure 23: Decorative Precast Panel – by JMV





Figure 24: North East Curtain Wall – by JMV

Figure 25: Unfinished Retail Space – by JMV



Figure 26: South West Corner – by JMV



Figure 27: Projection of Post Tension Beam – by JMV